Ghost Imaging
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e General topic: correlation-based imaging with noise sources.

e Particular application: Ghost imaging.
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Scalar wave equation and Green’s function

e In this talk, we consider the scalar wave model in R?, d = 2, 3:

1 O%u
c?(x) Ot?

— Agu = n(t, &)

n(t,a): source.
c(@): propagation speed (parameter of the medium), assumed to be constant outside

a domain with compact support.

In the Fourier domain:

we have

where the time-harmonic Green’s function G(w, &, %) is the solution of the Helmholtz

equation

2
w

c(Z)

with the Sommerfeld radiation condition (¢(&) = co at infinity):

AzG + G=—6(&— ),

d—1 r A
lim |&| T (% V- ii)G(w, Z,9) =0
|| — oo ]az| Co
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Green’s function estimation with ambient noise sources (1/3)

1 O%u
c?(x) Ot?

— Agu = n(t, )

e Sources n(t,): random process, stationary in time, with mean zero and covariance

(n(t1,g1)n(t2, g2)) = F(ta — t1)K(41)0(g1 — Yo)

(-): statistical average.
The function F is the power spectral density of the sources.

The function K characterizes the spatial support of the sources.

e The empirical cross correlation:

1 [T
—/ u(t, @1)u(t + 7, T2)dt
1 Jo
converges in probability as T — oo to the statistical cross correlation C'Y) given by
C(r,&1,32) = (u(0,&)u(r,Z2))
1

= 5 [ 45 [ dwCle.@ )G, @2 K@) P e
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Green’s function estimation with ambient noise sources (2/3)

OO
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Cross correlation with noise sources distributed on a closed surface 0B(0, L):

1 =
CO (1, &1, &) = %/dw/w( | do@)G
0,

(wa j)17 g)é(wv 527 g’)ﬁ(w)e_’w”'
By Helmholtz-Kirchhoff identity,

S 21w N A S o A IR

B, &) — Olw, &1, 3) = 2 / 4o (§)C(w, &1, §)Cw, B, §)
€0 JoB(0,L)

we have

—Im(é(w,a_ﬁ, r

E2))e T dw
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Green’s function estimation with ambient noise sources (3/3)
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e The cross correlation is related to the Green’s function.

— the passive sensors can be transformed into virtual sources.

e If the medium is homogeneous

A — — 1 . w — —
G(wamlan) — - S €XP (Z—|CB1 — $2|)
47T|w1 — .’B2| Co
then )
A — — F . — —
C’(l)(w,wl,mg) __ % (@) smc(ﬂkcl — 5132|)
2w Co
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Reflector imaging with a passive receiver array

e Ambient noise sources (o) emit stationary random signals.
e The signals (u(t,&,))r=1,... n, are recorded by the receivers (€,),=1,... N, (A).
e The reflector (¢) is imaged by migration of the cross correlation matrix [1]:

— w’r‘/ - w’l"_ — —
I(§°) = Z Cr (| gl | Coy |,wr,ww)

1 T
with  Cr (7, &y, &) = = / u(t + 7, &, )u(t, &, )dt
0
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Good image provided the ambient noise illumination is long (in time) and diversified
(in angle) [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. I'maging Sciences 2, 396 (2009).



A successful application: seismic exploration below an overburden

Data: {u(t,@,;&s),t e R,r=1,..., Ny, s =1,...,Ns}
Correlations: {C’(t Tr, L), teRr,r' =1,...,N;}
C(t w?“awr - 3_1 f t ‘|_t wraws) (tlair’Efs)dt, Overburden

Sources

Receivers
Underburden

Imaging by migration of correlations [1]

From Bakulin and Calvert (2009)

-1500

1500
200 =22

-1600 -1600

il "“\||

-400 e

-800 2 1700 1700

-800.

T

AN
(
U

-1000 "—A -1800

= = - -1800

1200

fiif

e S u Al -1900 — -1800
-1400 EE— . =

-1600

-2000 — -2000

-1800

-21 00 -210Q
-300 -200 -100 0 100 200 300

LA’
o
(=]
N
Qo
o
i
o
Q
(=]
=
(=)
(=]
N

o

o
[
(=)
(=]

geometric set-up data migration correlation migration

[1] J. Garnier and G. Papanicolaou, Inverse Problems 28, 075002 (2012): SIIMS 7, 1210 (2014).



Ghost imaging

Beam splitter
Source P

4>

-

R

Object (mask) Bucket detecto

VNV High-resolution detector |
e — Correlator

e Noise source.

e without object in path 1; a high-resolution detector measures the spatially-resolved
and time-resolved intensity I (¢, ).

e with object (mask) in path 2; a single-pixel detector measures the
spatially-integrated and time-resolved intensity I2(t).

Experimental results: the correlation of I; and Is is an image of the object [1,2] !

[1] A. Valenciaet al., PRL 94, 063601 (2005): [2] J. H. Shapiro et al., Quantum Inf. Process1 949 (2012).



Ghost imaging

e Wave equation in paths 1 and 2:

1 (9211,3'

— Agu; = o 2 -
C?(f) Ot2 Uy n(ta 513)5(2:), £ (w, Z) c R™ x R, J 1,2

e Noise source:
(n(t,z)n(t,z’)) = F(t —t")K(x)é(x — ')

with F'(w) centered on wo.

e Observations:
Lt,z) = |ui(t, (z, L))

I(t) = / L(t,z")dx' = luz(t, (z', L + Lo))|*da’
R2 R2

e Correlation:

Cr(x) = %/OT Ly (L, 2) I (1) dt — (% /OT Lt w)dt)(% /OT (1))

e Let us first carry out the analysis in homogeneous media.
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e Wave representation in path 1:
ﬁl(w,w) — / él (CU, (waL)a (y,O))ﬁ(w,y)dy
R2

with G1 (w, (=, L), (y,0)) = Go(w, (z, L), (y,0)) (no object).
e Wave representation in path 2:

1o (w0, ) = /R G (w, (@, L+ Lo), (3, 0))i(w, y)dy

with
G2 (w, (x, L+ Lo), (¥,0)) = [z Go(w, (z, L + Lo), (r, L)) T (r)Go(w, (r, L), (y,0))dr
(mask 7 (7) in the plane z = L).
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e Wave representation in path 1:

inw.@) = [ Gl (@, L), (4.0))lw,v)dy
RQ
with G1(w, (=, L), (y,0)) = Go(w, (z, L), (y,0)) (no object).
e Wave representation in path 2:
ia(w.@) = [ Gafw, (@ L+ Lo). (9,0)) (e, y)dy
R2

with
G2 (w, (z, L+ Lo), (y,0)) = [42 Go(w, (x, L + Lo), (v, L)) T (r)Go(w, (v, L), (y,0))dr
(mask 7 (7) in the plane z = L).

e Result with n(t,x) Gaussian distributed:

Cr(z) =3 W (z)

V) = oo //dwdw /R dy/Rz dy' K () K (4 ) E(w) (o)
x G (w, (@, L), (y,0)) G1 (', (=, L), (3, 0))
></]R da' G (w, (&', L + Lo), (y,0))Ga2(«', (2, L + Lo), (3, 0))
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e Wave representation in path 1:

i (w, ) = /R G (w, (@, L), (3, 0))A(w, )dy

with G1(w, (=, L), (y,0)) = Go(w, (z, L), (y,0)) (no object).
e Wave representation in path 2:
ia(w.@) = [ Gafw, (@ L+ Lo). (9,0)) (e, y)dy
R2

with
G2 (w, (®, L + Lo), (¥,0)) = [ Go(w, (z, L + Lo), (v, L)) T (r)Go(w, (r, L), (y,0))dr
(mask 7 (7) in the plane z = L).

e Result with n(t,x) Gaussian distributed:
Cr(z) =3 ¢V (x)
with quasi-monochromatic approximation F concentrated around wo:
V@) = 2 dy [ ayK@KW)
R2 R2
%G1 (wo, (e, L), (y,0))G1 (wo, (2, L), (,0))

X /2 dw,é? (WO, (wla L+ LO)) (y7 O))GQ (WO, (wla L+ L0)7 (yla O))
R
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X /2 dw,é—2<w07 (wla L+ LO)) (y7 O))GQ (WO; (w,a L+ L0)7 (yla O))
R

With G (wo, (z, L), (y,0)) = Go (wo, (2, L), (y,0)) and A
Go (wo, (a:, L+ Lo), (’y, O)) = fRQ Go (wo, (CB, L+ Lo), (’I”, L))T(T‘)Go (wo, (’I”, L), (y, O))d’l”
we get

cW(x) = 2/]1@2 dr /R2 dr' T (v)T (")
X /1%2 dyK(y)GO (wo, (wv L)a (y7 0))G—o(wo, (’P, L)a (ya O))

X /R? dy/K(y/)éo (wo, (wa L)a (y/7 O)>é0 (wo, (rlv L)a (y/a O))

X / dwlé—o(wo, (wla L+ L0)7 (’I”, L))éo (WO, (wla L+ L0)7 (rla L))
R2
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cW(x) = Q/R dr /R2 dr' T (v)T (")

N

/l% dyK(y)GO (wo, (wv L)a (y7 O))GO (wo, (’P, L)a (ya O))
X /R dy/K(y/)G_o(wo, (wa L>7 (y/7 O>>é0 (wo, (rlv L)a (y/a O))

da' Go (wo, (', L + Lo), (r, L)) Go (wo, (', L + Lo), (r', L))
Use reciprocity:

cWx) = 2
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¥

X /l% y/K(y/)GO (wo, (rlv L)a (y/a O>>G—O(w07 (y/7 O>7 (wv L))
/1% dwléo (wo, (’P/, L), (az', L+ Lo))éo (wo, (az', L+ Lo), (’P, L))

Quick guess:

CO(z) ~ /dr/ dr'T(r
R2 R2

Xhg(r —x)
xhi(r' —x)
xho(r — ')

C|T ()|

2
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e Resolution analysis:

(n(t,z)n(t,x')) = Ft —t)K(x)d(x — '),  K(x) = Ipexp ( _ _2)

Paraxial Green’s function:

A 1 wo, .wol|z—y|?
G 3 aL ) 30 — T ( _L >
O(WO (33 ) (y )) 47TL exp ZCO +ZCO 2L
e Result:
cW(x) = / h(z — )T (r)|*dr
R2
with
I2rg ]az|2 5 ca L
o o (- ) e
(@)= rperz P\~ 42, Peid = 5212

Resolution: pgio ~ AoL /10, Ao = 2mwco/wo (Rayleigh resolution formula).

Grenoble
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e Extension for partially coherent source (Gauss-Schell model):

/ / / |CIZ—|—CC/|2 |w_w,|2
(n(t,@)n(t',a)) = F(t = t)oexp (- T )
e Result:
CYNx)= | H(z,r)|T ()| dr
RQ
with
137§ p5ch z—r]? |z+7r|°
Hia,r) = o )
32wy pain Rz 4pgin 4Ry,
212 2 2 212 2
2 coL Po 2 Po 2 coL o
. = — _ . P R . e — J—
pgll 2&)87"(2) —1_ 4 IOgIO —|_ 4 3 gil 2608/)(2) —1_ 4

- Loss of resolution due to the partial coherence of the source: pgi1 > pgio-

- Fully incoherent case pg — 0: cf previous case pgi1 = Pgio-

. 1—2 402 2 2
- Fully coherent case ro = po: the kernel is H(x,r) = 2200 exp ( S ./l i
32w4Pgi1 2Pgi1 2Pgi1

which means there is no resolution at all.
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Wave propagation in a random medium

e Random medium model: 1ol “ At W
1 1 B R g Y 08
62(:5):0_2(1+“(w)> SIS &
0 > 0 " P L. »

co is a reference speed, e L 2T Ty

-5, - - ‘— |
((@) is a zero-mean random process. o 0 DR
40 5 0 5 10

e The background Green’s function (deterministic and known):
2

AzGo(w, &, §) + 5 Co(w, & §) = ~0(& — )
0

The physical Green’s function (random and unknown):

2
A —  — W — A — — — —
0

Note:
- the statistics of (G(w, &, ¥))z is a nonlinear function of the statistics of (u(&))z.

A

- a detailed stochastic analysis is possible in different regimes of separation of scales

(small wavelength, large propagation distance, large bandwidth, ...).
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Wave propagation in a random medium: the paraxial regime

e Consider the time-harmonic form of the scalar wave equation (& = (x, z))

2

(0% + AL )i+ °CJ—2 (1+ p(z, 2))0 = 0.
0

Consider the paraxial regime A < [. < L. More precisely, in the scaled regime

W 3 , & Z
w= g, pl@) = e n(S ),
the function ¢° defined by
iR . w T
u(w,zc,z)—e 0¢(€—4,62,2’)
satisfies
402 e 21 2N\ Je
e2920° + (20£0,6° + AL d° —|———,u(£13,—2)qb = 0.
Co c§ € £

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19 318 (2009).



Wave propagation in a random medium: the paraxial regime

e Consider the time-harmonic form of the scalar wave equation (£ = (x, 2))

2
(0% + AL )i+ ‘;’—2 (1+ p(z, 2))a = 0.
0

Consider the paraxial regime A < [. < L. More precisely, in the scaled regime

w— = u(x, z) — 63,u(

r =z
84’ )7

g2’ g2

the function ¢° defined by

,I:CUZ N w a;b

~E _  td. e
U (CU,CB,Z)—e qu (8_476_272)
satisfies ,
/\8 . /\8 /\8 1 Z ,\8
e 02¢° + (2’&&82(/5 +A1 ¢ + w—2—,u(a:, —2)<b ) = 0.
Co c§ € £

e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid
and ¢ = lim._,o ¢° satisfies the [t6-Schrodinger equation [1]

w A ~ w2 . ~
20,0+ AL ¢+ Bz, 2)p =0

with B(x,z) Brownian field E[B(x, 2)B(x',2")] = v(x —x') 2 A 2/,
2(@) = [ E[u(0,0)u(, )|dz.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19 318 (2009).



Wave propagation in a random medium: the paraxial regime

e Consider the time-harmonic form of the scalar wave equation (& = (x, 2))

2

(02 + AL)a + ‘Z—Q(Hu(m 2))i = 0.
0

Consider the paraxial regime A < [. < L. More precisely, in the scaled regime

W s T Z
w= g, al@) = (S 5),
the function ¢° defined by
W (w,x,2) = e’ =1co (ﬁg(i hd 2)

satisfies

*1
0267 + (2z— 0:0° + ALg +°"—gu(az,€%)¢e) = 0.

Co CO
e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid

and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation [1]

ZC()

dd = —Aqudz — 2—(/5 odB(x, z)

with B(«, z) Brownian field E[B(x, 2)B(x',2')] = v(x — x') 2 A 2/,
— [ E[(0,0)u(w, 2)]d=.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19 318 (2009).



e We introduce the fundamental solution é(w, (z, 2), (20, 20)):

do = @Amdz 1 2—¢ o dB(z, 2)
starting from é(w, (x, 2 = 20), (x0, 20 ) d(x — xo).
e In a homogeneous medium (p = 0, B = 0) the fundamental solution is
iw|z—mxg |2

N €Xp 2co|z—%20
Qbo (w7 (w7 Z>7 (wO; ZO)) = ( |,|z—zo|| > .

217 Co

e In a random medium:

]E[qg(w, (x, 2), (0, zo))} = cﬁo (w, (x, 2), (0, zo)) exp ( — W(O)w&[’g ~ %o ),

where (@ f Elu )i(x, z)]dz = Strong damping of the coherent wave, with

the Scattermg mean free path lsca = 8¢5/ (7(0)w?).

A

E[qg(w (2, 2), (zo, 20)) P (w, (&, 2), (x0, 20))|
:éo(w,(w CBo,Zo) ( (', 2), (330720)) exp(—

Yo (x — " )w?|z — zo])
4c? ’

where y2(z) = [ v 0 v(xs)ds.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19 318 (2009).



Ghost imaging in the random paraxial regime

Beam splitter
Source P |
—» — |
4> ‘ 2 ‘
—» = I
i .

Object (mask) Bucket detecto
1)

High-resolution detector /
Correlator

The medium in paths 1 and 2 is heterogeneous (typically, turbulent atmosphere).

They are two independent realizations of the same distribution.
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e If the correlation function of the noise sources is

(n(t,z)n(t ')} = F(t — ') ]y exp ( _ "’”—l)a(w _2),

To

if we denote the integrated correlation function of the medium fluctuations by

@) = [ Blu(0,0)u(x.2)ld:

e then
cW(z) = i H(z — y)|T (y)|°dy,
R
with , ; ;
_ Igrg 8] Y2(roB)woL worox - B
H(x) = 2873 4 /Rg dﬁexp( 2 2c3 T coL )
and v2(x) = [ ( v(xs)ds.
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e If the medium is strongly scattering, in the sense that the propagation distance is

larger than the scattering mean free path L/lsca > 1, with

- 80(2)
=50

e then
H(x) = Igrépéio exp ( B ]a:|2 )7
27772[/4/);12 4,0;12
with
o cgL? 4L 4¢3 L3
Pei2 = 00212 T 30llecall,  TE0 T B02lcal2,,

and the correlation radius of the medium [.o, is defined by:
v(@) = v(0)[1 — |z|*/1e: + o(|z|* /1eor)]-

— Scattering only slightly reduces the resolution !

This imaging method is robust with respect to medium noise.
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Ghost imaging in the random paraxial regime

Beam splitter

Source |

> - |
— > 9

> 2 !

i .

Object (mask) Bucket detecto

High-resolution detector /
Correlator

The medium in paths 1 and 2 is heterogeneous (typically, turbulent atmosphere).

Imagine that they are the same realization (just for the beauty of the analysis).
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e If the correlation function of the noise sources is

(n(t, z)n(t' @) = F(t —t')Io exp ( _ %)5@ _2),

if we denote the integrated correlation function of the medium fluctuations by
v(@) = [ Elu(0,0)u(e,2))dz

— o0

if L/lsca > 1, with
o 8ci
T (00

if y(x) = v(0)[1 — |2|* /lcor + ol||*/lcor )],

e then
CW ()= [ H(z—y)|Tw) dy,

R
with - ,

I5To ||

H@) = grpapr o (— 3,7);
with the radius
1 1 16 L
- — _|_ 5 ;

péig B péio lscallor
— the radius of the convolution kernel is reduced by scattering and can even be
smaller than the Rayleigh resolution formula: enhanced resolution compared to the

homogeneous case (similar phenomenon observed in time-reversal experiments) !
Grenoble December, 2014



Virtual ghost imaging

Source I
 » - |
|
|

Object (mask) Bucket detecto

~“Numerical wave
solver

» Correlator

- The medium in path 2 is randomly heterogeneous.

- There is no other measurement than the integrated transmitted intensity Is(t).

- The realization of the source is known (use of a Spatial Light Modulator) and the
medium is taken to be homogeneous in the ”virtual path 1”7 — one can compute the

field (and therefore its intensity I1(¢,«)) in the ”virtual” output plane of path 1.
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e If the correlation function of the noise sources is

(n(t,z)n(t' ')} = F(t — ') ] exp ( _ %)5(;1; _2),

if we denote the integrated correlation function of the medium fluctuations by

@) = [ Elu(0.0)(, 2)]d

— 0

if L/lsca > 1, with
o 8ch
T 0w

if v(z) = v(0)[1 — ||/, + o(|z|?/12,,)],

e then
CW(x) = H(z - Y| T ()| dy,
R
with D4 o ,
I T i
H(@) = 570t exp (- 121
20m2 L pgiy 4pgia
with the radius
9 co L? 2caL? 9 2c5 L7
Pgiqa = — Pgio

2,.2 2 2 ’
QWO TO 3&)0 lscalgor SwOlscalgor

— a one-pixel camera can give a high-resolution image of the object in scattering
media
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Conclusion

e Imaging with noise sources and/or through scattering media is possible using

correlation-based techniques.
e First application: seismic interferometry, virtual source imaging.
e Second application: ghost imaging.

e Many other applications !
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